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Abstract— An efficient 2-D joint full-waveform inversion
method for electromagnetic and seismic data in a layered medium
background is developed. The joint inversion method based on
the integral equation (IE) method is first proposed in this paper.
In forward computation, the IE method is employed, which
usually has smaller discretized computation domain and less
cumulative error compared with the finite-difference method.
In addition, fast Fourier transform is used to accelerate the
convolution between Green’s functions and induced sources due
to the shift invariance property of the layered Green’s functions
in the horizontal direction. In the inversion model, the cross-
gradient function is incorporated into the cost function of the
separate inversion to enforce the structure similarity between
electric conductivity and seismic-wave velocity. We use the
improved variational Born iteration method and two different
iteration strategies to minimize the cost function and reconstruct
the contrasts. Several typical models in geophysical applications
are used to validate our joint inversion method, and the numerical
simulation results show that joint inversion can improve the
inversion results when compared with those from the separate
inversion.

Index Terms— Stabilized biconjugate gradient fast Fourier
transform (BCGS-FFT), joint inversion, structure constraints,
variational Born iteration method (VBIM).

I. INTRODUCTION

ELECTROMAGNETIC (EM) and seismic data are widely
used in geophysical exploration. For a long term,

their inversion processes were performed individually. These
two modalities have their own advantages and disadvantages.
Seismic inversion cannot provide information to distinguish oil
from water. The EM data inversion is sensitive to conductivity
variations, but it usually has lower resolution than the seismic
inversion, since the low-frequency EM field for geophysical
application in lossy ground is a diffusive field [1], [2].
In addition, the conductivity difference between oil and gas
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is negligible, which leads them to be indistinguishable by
EM inversion. Fortunately, this can be compensated by seis-
mic inversion. Therefore, joint inversion of EM and seismic
data can avoid their own disadvantages but combine their
advantages, and thus improve the capabilities of geophysical
evaluation [3].

The concept of joint multiphysical inversion was first pro-
posed in [4], and acquired great development in the past
decades. Two main approaches are suggested for joint inver-
sion. One is based on the petrophysics of the rocks [5]–[7],
and the other is to make use the structure similarity [8]–[12].
In the first method, the relationship between seismic data and
EM data is established through petrophysical links [7], such as
Archie’s equations [13] and Waxman and Smits’ equation [14].
In the second method, the structural constraint function is
added to the original cost function to enforce the structure
similarity [9], [11], [15], [16]. Compared with the second
method, a stronger constraint is used in the first method, which
usually leads to more accurate results. However, the equations
of petrophysical relationships are usually problem-dependent.
Therefore, the first inversion method can be applied only to
limited situations. Fortunately, the second inversion method is
not subject to specific problems, and therefore, it can easily
be extended to various data.

Joint inversion based on the structural constraint func-
tion is usually performed by combining separate inversion
methods in different physical areas. One typical joint inver-
sion method is to use full-waveform inversion (FWI) for
all physical fields [11]. In the joint FWI model, the finite-
difference (FD) is often used for forward computation, and
the adjoint approach is often used to calculate the Fréchet
derivative matrix for inverse computation [11], [16]–[19].
In this paper, we use the integral equation (IE) method
to perform the forward computation. The IE method has a
smaller computational domain and accumulated error than the
FD method [20]. When the forward calculations are real-
ized with the IE method, we often solve inverse problems
with the Born iteration method (BIM) [21], the distorted
BIM [22], the variational BIM (VBIM) [23], or the con-
trast source inversion [24]. VBIM was first proposed for the
conductivity reconstruction in an axisymmetric medium for
induction well-logging application, which shows a fast and
stable convergence in the inversion iteration [23], [25]. We use
the improved VBIM in the inversion computation, since the
Fréchet derivative matrix can be obtained with just once

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LAN et al.: JOINT INVERSION OF EM AND SEISMIC DATA BASED ON STRUCTURAL CONSTRAINTS USING VBIM 437

integration in VBIM, which is easier and faster than the adjoint
approach. Moreover, due to the IE method, the direct inversion
parameters in VBIM are the contrasts, which are the relative
physical parameters without units. Therefore, we no longer
consider the different dimensions and units of the ultimate
inversion parameters that are often considered in other joint
inversion methods [11], [26], [27].

In this paper, we apply the joint inversion of electrical con-
ductivity and seismic velocity through enforcing the structure
similarity constraints and performing the VBIM algorithm.
Detailed descriptions of the forward model, separate models,
and the joint inversion model are given. Then, we test both
the separate inversion models and the joint inversion model
using two groups of synthetic measured data, and compare
the accuracy and efficiency of these models. The antinoise
ability of the joint inversion model is also evaluated.

II. METHODS

A. Forward Model
In the 2-D model, the computational domain is defined

in the xz plane and there is no variation in the y-direction.
In geophysical applications, the z-axis is usually downward
and represents the depth, while the x-axis stands for the
horizontal distance.

For EM modeling, we restrict to the 2-D transverse magnetic
case. This means that the electric line source is infinitely long
in the y-direction, and the electric field exists only in the
y-direction. Then the equation of the electric field in
Maxwell’s equations is reduced to a scalar Helmholtz equation(

� + k2
EM

)
Ey = jωEMμ0 Jy (1)

where k2
EM = ω2

EMμ0(ε − jσ/ωEM) represents the complex
wave number of the EM field.

For seismic modeling, we use scalar acoustic approxima-
tion, which is better posed in inverse problems [28]. On the
assumption that the mass density is constant, the acoustic
equations are simplified into the Helmholtz equation [29](

� + k2
S

)
p = − f (2)

where kS = ωS/c, c is the acoustic velocity and f denotes
the volume source distribution.

In the forward model, it is assumed that the electric and
acoustic parameters of the scatters that are buried in layered
media are known and field values at the receivers are to be
solved. For the volume IE method, the total field is split into
the incident field and the scattered field. The incident field is
the field when the scatters are not present in the layered media.
Since (1) and (2) have similar mathematical expressions, the
IE can be expressed as

φtot(r) = φinc(r) + k2
i

∫
s

g(r, r′) · χ(r′)φtot(r′)dr′ (3)

where ki is the wavenumber of EM or acoustic in the i th layer,
and χ = (k2−k2

i )/k2
i is contrast. φ is the field that can denote

Ey or p. The superscripts tot and inc mean the total field and
the incident field, respectively. g is 2-D Green’s function in the
layered media that has the same expression for (1) and (2).
2-D Green’s function in homogeneous media has the form

of the second kind Hankel’s function. Its semiclosed form
in layered media can be solved by the wave decomposition
method or the transmission line analogy method. Both the
methods have been proved feasible for 3-D layered Green’s
functions [30], [31]. Equation (3) cannot be solved analyt-
ically. The method of moment is always used to solve it
numerically in a discretized system. However, the direct matrix
solver is time-consuming. In this paper, we use the pulse
basis functions and the stabilized biconjugate gradient (BCGS)
iteration method to solve the total field in (3). Moreover,
the fast Fourier transform (FFT) is applied to accelerate the
convolution between Green’s functions and induced sources,
because the layered Green’s function is shift invariant in the
horizontal direction [3].

B. Separate Inversion
In the inversion model, it is assumed that the fields at

the receivers are known and the contrast χ is to be solved.
In order to solve them iteratively, we first use the Born
approximation at each iteration in the IE, i.e., the total
field is approximated by the incident field [23], [25]. This
approximation is reasonable only for weak scattered fields. For
most geophysical exploration using EM waves, the scattered
fields are weak, because the wavelength and the skin depth
are much larger than the scatterer size, and the attenuation
caused by the background medium also plays a role. However,
for the seismic-wave exploration, it depends on the frequency
and the scatterer size. Numerical experiments show that Born
approximation can be employed when the misfit between the
incident field and the total field is less than 30%. In this
paper, we do not test geophysical exploration cases having
strong scattering, so Born approximation is feasible. In this
way, the scattered field can be expressed as

φsct(r) = k2
i

∫
s

g(r, r′) · χ(r′)φinc(r′)dr′ (4)

where χ is the direct inversion parameter. We can get the
variational representation of φsct about χ

δφsct(r) = k2
i

∫
s

g(r, r′) · δχ (r′)φinc(r′)dr′ (5)

where δφsct means the misfit between the computed scattered
field and the measured scattered field. Meanwhile, δχ means
the misfit between the reconstructed contrast and the real
contrast in the computational domain. In this way, the problem
is linearized in the discretized IE, which is expressed as

δφsct = [L]δχ (6)

where [L] is a matrix. Each element of [L] can be expressed as

Lmn = k2
i

∫
s

g
(
rm, r′

n

) · φinc(r′
n

)
dr′ (7)

where m is the global index of the receiver and n is the global
index of the discretized grid in the inversion domain. It should
be noted that L keeps unchanged during the whole inversion
process due to the Born approximation, so we compute the
integration just once. In the strong scattering case, L should
be computed through total field precisely and updated in
each iteration. Unlike the VBIM algorithm given in [23],
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we improve the VBIM with normalization to balance the
contribution of each term in (8). The cost function with the
regularization term in the qth iteration step is defined as

F(δχq) =
∥∥δφsct

q−1 − [L]δχq
∥∥2∥∥δφsct

q−1

∥∥2 + γ 2 ‖δχq‖2

‖δχq−1‖2 (8)

where δφsct
q−1 represents the field misfit computed in the

q − 1th iteration and γ 2 is the regularization parameter. This
linear least square problem is equivalent to solve

([L]†[L] + γ 2
∥∥δφsct

q−1

∥∥2∥∥δχq−1
∥∥2 I)δχq = [L]†δφsct

q−1 (9)

with the conjugate gradient (CG) method [32], where † denotes
complex conjugate and transpose.

C. Joint Inversion
The separate inversion algorithm discussed in Section II-B

is performed for the electric and pressure fields, independently.
Joint inversion is to combine the EM and acoustic information
together. The key point is using the structure similarity to
enforce the gradients of electric and acoustic contrasts aligned
along the same line. The idea is to minimize the cross-gradient
function, which is given by [9]

t(x, z) = ∇χEM(x, z) × ∇χ S(x, z) (10)

where “×” is the outer product. Since the contrasts are
relative values without units, there is no need to balance the
contribution of different physical parameters, which is used in
available structure constraints joint inversion [9], [11], [27],
[33], [34]. Different from the forward difference to expand
[9, eq. (10)], we utilize the central difference to gain the
second-order accuracy [33]

ti, j =
(

χEM
i, j+1 − χEM

i, j−1

2�z

)(
χ S

i+1, j − χ S
i−1, j

2�x

)

−
(

χEM
i+1, j − χEM

i−1, j

2�x

)(
χ S

i, j+1 − χ S
i, j−1

2�z

)
(11)

where i and j denote the indexes of the discretized grids
in the x-direction and the z-direction, respectively. There are
two methods to construct the joint cost function. One is to
combine both the cost functions of the EM and acoustic
separate inversions into a unified cost function as

F
(
δχEM

q , δχ S
q

)
=
∥∥δφEM,sct

q−1 − [LEM]δχEM
q

∥∥2∥∥δφEM,sct
q−1

∥∥2

+ γ 2

∥∥δχEM
q

∥∥2

‖δχEM
q−1

∥∥2 +
∥∥δφS,sct

q−1 − [LS]δχ S
q

∥∥2

‖δφS,sct
q−1

∥∥2

+ γ 2

∥∥δχ S
q

∥∥2∥∥δχ S
q−1

∥∥2 + w2

∥∥t
(
χEM

q , χ S
q

)∥∥2∥∥t
(
χEM

q−1, χ
S
q−1

)∥∥2 . (12)

Minimization of the cost function in (12) as a whole often
leads to an ill-posed problem as mentioned in [11]. Therefore,
we do not use this method in this paper. Instead, we use

Fig. 1. Flowchart of joint inversion with alternate iterations.

the second method. The cost functions, including the terms
of the cross-gradient function, are defined. When the cross-
gradient function is added to the cost function used in the
separate inversion, the cost function in joint inversion is
obtained as

F(δχφ
q ) =

∥∥δφφ,sct
q−1 − [Lφ]δχφ

q
∥∥2∥∥δφφ,sct

q−1

∥∥2

+ γ 2

∥∥δχφ
q
∥∥2∥∥δχφ

q−1

∥∥2 + w2

∥∥t
(
χ

φ
q , χother

)∥∥2∥∥t
(
χ

φ
q−1, χ

other
)∥∥2 (13)

where w2 denotes the weighting factor and φ can express
EM or seismic. There are two strategies to minimize the cost
function in (13).

Strategy-1 is that the EM inversion and seismic inversion are
executed alternately. The flowchart of this strategy is shown
in Fig. 1. The cross-gradient function in one physical inversion
is based on the latest parameters that are acquired in the
last iteration performed in the other physical inversion, and
thus the EM inversion and seismic inversion are executed,
alternately.

Strategy-2 is that the cross-gradient function in one physical
inversion is based on the final result of the other physical
inversion. Since the resolution of seismic inversion is usually
better than that of EM inversion in geophysical application [2],
we can first retrieve the seismic parameters with (8). Then,
EM inversion is performed in (13) with the seismic parameters
fixed in the cross-gradient function. Once the EM parameter
is acquired, we substitute it into (13) and fix it, and then solve
the acoustic contrast iteratively.

To realize the linearization of the cross-gradient function t,
we approximate it in the present iteration with the first-
order Taylor series expansion around its value in the previous
iteration [9]

t(χq) ∼= t(χq−1) + [B]δχq (14)

where [B] is the Jacobi matrix of t about χ and δχq = χq −
χq−1. Note that (13) is similar to (8) except that the term of
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Fig. 2. Cross-well scenario. Transmitters and receivers are placed in the
two wells. The domain of interest is located between the two wells.

Fig. 3. Layered ocean scenario. Transmitters and receivers are placed near
the seafloor. Our goal is to find the reservoirs below the seafloor.

cross-gradient is added. In order to employ the CG method to
find δχq to minimize F , we transform (13) to [35]

([L]†[L] + γ 2
∥∥δφsct

q−1

∥∥2

‖δχq−1‖2 I + w2
∥∥δφsct

q−1

∥∥2

‖tq−1‖2 [B]†[B])δχq

= [L]†δφsct
q−1 − [B]†tq−1. (15)

This equation can be directly solved by the CG iteration
method [36]. Besides the maximum iteration numbers and
minimum field data misfit be directly solved by the CG itera-
tion, the iteration process is also terminated when the inversion
parameters are almost unchanged in two successive iterations.

III. NUMERICAL ASSESSMENT

To verify our joint inversion algorithm, we use two typical
geophysical models, the cross-well model, and the layered
ocean model, which are widely used in geophysical applica-
tions. Their scenarios are shown in Figs. 2 and 3, respectively.

A. Cross-Well Model

As shown in Fig. 4, the true model has a homogeneous
background with an electrical conductivity of 0.5 S/m and
an acoustic velocity of 2500 m/s. The inversion domain size

Fig. 4. True cross-well model. (a) Conductivity distribution. (b) Acoustic
velocity distribution. Transmitters distribute uniformly from depth = 0 m to
depth = 100 m with an interval of 5 m in the vertical line at distance = −1 m
and distance = 51 m, respectively. Receivers distribute vertically with
1-m offset of transmitters.

is 50 m×100 m. There are two regions buried in the reservoir.
The top structure is a trapezoid that contains oil in the upper
layer and water in the next layer. The bottom structure is a
rectangular box filled with oil. The oil has an electrical con-
ductivity of 0.001 S/m and an acoustic velocity of 2300 m/s.
The water has an electrical conductivity of 1.0 S/m and
an acoustic velocity of 2330 m/s. The contrast of acoustic
velocities between oil and water is very small, and thus the
interface is hard to be discerned.

We test our joint inversion algorithm using just a pair
of frequencies: 500 Hz for EM measurements and 150 Hz
for seismic measurements. The transmitters and receivers are
arranged to be staggered. There are 21 transmitters distributed
uniformly between depth = 0 m and depth = 100 m in
the vertical line at distance = −1 m and distance = 51 m,
respectively. And there are 21 receivers distributed uniformly
between depth = 2.5 m and depth = 102.5 m in the
vertical line at distance = −1 m and distance = 51 m,
respectively. Thus, the total number of data sets for EM
and acoustic measurements is 1764 × 2. The measured data
used in the inversion are generated by our forward solver
based on the BCGS-FFT algorithm, which are validated by
comparing them with COMSOL simulations. In the inversion,
we assume that the background parameters are known as
a priori , since several numerical experiments show that the
retrieved conductivity or velocity are closely related to the
background parameters. The inversion domain is discretized
into 75×150 cells with the cell size of 0.67 m×0.67 m. Thus,
the total number of EM and seismic inversion parameters
is 11 250 × 2. In our inversion process, the factors γ and w
in (13) are always set as 0.1 and 0.3 separately, which are
efficient choices validated by numerical tests. For the initial
model, we use a homogeneous medium with χ1 = 0.01 and
δχ0 = 0.01 to avoid the denominator of the second term
in (13) to be zero.

The inversion results are shown in Fig. 5. From Fig. 5(d),
we find that the seismic inversion by VBIM can reconstruct
the profile well including the acoustic velocity and the shapes.
But it is far enough to distinguish the oil zone from the water
zone using seismic inversion alone. As is shown in Fig. 5(a),
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TABLE I

MISFITS FOR DIFFERENT INVERSION METHODS IN CROSS-WELL MODEL WHEN NOISE-FREE

Fig. 5. Inversion results for the cross-well model when noise-free. Recon-
structed profile of conductivity in (a) separate inversion, (b) joint inversion
with strategy-1, and (c) joint inversion with strategy-2. Reconstructed profile
of acoustic velocity in (d) separate inversion, (e) joint inversion with
strategy-1, and (f) joint inversion with strategy-2.

EM inversion result reflects the contrast of conductivities
well, which helps us to differentiate oil from water directly.
However, EM inversion has a poor resolution, which leads to
the unclear structure shapes. Fortunately, this can be improved
by joint inversion. As shown in Fig. 5(b) and (c), the low
resolution of EM inversion results can be compensated with
the nice structure information provided by seismic inversion.
It should be noted that several clutters show up in the joint
inversion images. However, they have no interference to our
judgments for the reservoir underground. The acoustic para-
meters from joint inversion also show some improvements.
As shown in Fig. 5(e), the reconstructed profiles of the velocity
using the joint inversion strategy-1 become closer to the real
model, since the interface between the oil and the water is
inverted directly.

The data misfits for inversion processes are shown in Fig. 6.
Because the iterations terminate when the data misfit is
smaller than a prescribed threshold or keeps almost unchanged,

Fig. 6. Inversion convergence process in the cross-well model. (a) EM data
misfits. (b) Seismic data misfits.

the iteration numbers are different for the separate or different
joint strategies. We can see that the inversion processes are
stable without oscillation. The iteration of separate or joint
inversion with strategy-1 converges faster than that of joint
inversion with strategy-2 for the EM data. However, for
seismic data inversion, the convergence speeds have no big
difference for three methods. This actually reflects the clutters
in the reconstructed results. The appearance of the clutters
means that the inversion iteration tries several times instead of
converging smoothly to the true values. As shown in Fig. 5(c),
the clutters are severe, so the joint inversion with strategy-2 for
the EM data is slow.

Both the field and model misfits when iterations termi-
nated for this case are summarized in Table I. Through joint
inversion, the norm of the cross-gradient function reduces by
two orders of magnitude. This means that the structure dif-
ference in the reconstructed electric conductivity and acoustic
velocity profiles becomes smaller. The data misfit of EM is
reduced in joint inversion compared with separate inversion.
And the model misfits of the acoustic velocity also decrease.
However, the model misfits of conductivities become larger.
This is caused by those clutters outside the original scattering
objects, which are shown in Fig. 5(b) and (c). In this cross-
well model, the average time of one iteration step is 45 s
for EM inversion and 23 s for seismic inversion in an Intel
i5-6500 CPU with a memory of 8 GB.

Then, we consider the data contaminated with random
noise. The joint inversion results for the signal-to-noise
ratio (SNR) = 6 dB are shown in Fig. 7. The location of
buried objects is still obvious although the structures have
some degree of deformation. In addition, it is obvious that
the inversion by seismic waves has stronger antinoise ability.
From the data misfits and model misfits given in Table II,
we can see that joint inversion also improves the seismic
inversion results although the misfit absolute values are larger
than those without noise. In order to evaluate the antinoise
ability of our joint inversion algorithm, we plot the iteration-
terminated data misfits and model misfits versus different SNR
values in Fig. 8. In general, the misfits decrease as the SNR
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TABLE II

MISFITS FOR DIFFERENT INVERSION METHODS IN CROSS-WELL MODEL WHEN SNR = 6 dB

Fig. 7. Inversion results for the cross-well model when SNR = 6 dB.
Reconstructed profile of conductivity in (a) separate inversion, (b) joint inver-
sion with strategy-1, and (c) joint inversion with strategy-2. Reconstructed
profile of acoustic velocity in (d) separate inversion, (e) joint inversion with
strategy-1, and (f) joint inversion with strategy-2.

increases. But, due to the random noises, the misfits can
fluctuate in some points. Comparing Fig. 8(c) and (d), we can
see that the antinoise ability by seismic waves is better than
that by EM waves. Not only model misfits are smaller but also
they decrease more stably as the SNR increases for seismic
waves.

B. Approximate Ocean Model

In the second example, we imitate the ocean, including both
the sea water and the seabed, as is shown in Fig. 9. The upper
space is the seawater, whose conductivity is 3 S/m and acoustic
velocity is 1500 m/s. The lower space is the seabed with a
conductivity of 1 S/m and an acoustic velocity of 2000 m/s.
In this model, we utilize Green’s function in layered media to
reduce the computation domain. There are also three different
structures buried in the seabed. They all have a conductivity
of 0.001 S/m, which can be oil or gas. The left structure is a
slope with an acoustic velocity of 1800 m/s, which can denote

Fig. 8. Data misfits and model misfits change with the SNR in the cross-
well model. Data misfits of (a) EM and (b) seismic waves. Model misfits
of (c) EM and (d) seismic waves.

Fig. 9. True half-space approximate ocean model. (a) Conductivity distri-
bution. (b) Acoustic velocity distribution. Transmitters distribute uniformly
from distance = −1 km to distance = 11 km with an interval of 200 m
at depth = −50 m. Receivers distribute horizontally with −100 m offset of
transmitters.

the gas reservoir. The middle structure is a triangle with an
acoustic velocity of 2200 m/s. The right structure shows a
small rectangle hidden under a big trapezoid, whose acoustic
velocity is 2200 m/s. The middle and right structures can
denote the oil reservoirs.
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Fig. 10. Inversion results for the approximate ocean model when noise-free. Reconstructed profile of (a) conductivity and (b) acoustic velocity in the separate
inversion. Reconstructed profile of (c) conductivity and (d) acoustic velocity in the joint inversion with strategy-1. Reconstructed profile of (e) conductivity
and (f) acoustic velocity in the joint inversion with strategy-2.

TABLE III

MISFITS FOR DIFFERENT INVERSION METHODS IN APPROXIMATE OCEAN MODEL WHEN NOISE-FREE

We place 61 transmitters equally from distance = −1 km
to distance = 11 km at the horizontal line of depth = −50 m.
And the receivers locate between distance = −1.1 km and
distance = 10.9 km at the depth = −50 m. The controlled-
source EM source frequency is 0.25 Hz. The seismic
source frequency is 1.2 Hz. The computational domain is
10 km × 2 km. We discretize the domain into 200 × 40 cells,
and the cell size is 50 m × 50 m. The parameters γ and
w used are the same as in the cross-well model.

First, we invert the data without noise. The inver-
sion results are shown in Fig. 10. We can see that
the acoustic velocity profiles by separate inversion shown
in Fig. 10(b) are well reconstructed, while the conductivity
profiles shown in Fig. 10(a) are blurry. However, when we
employ joint inversion and add the structural constraints, the
conductivity profiles become more discernible, as is shown in
Fig. 10(c) and (e). There is no big difference for the con-
vergence rates in both separate and joint inversions, as is
shown in Fig. 11. The average time of one inversion iteration
is 11 s for EM inversion and 13 s for seismic inversion.
We also evaluate the misfits and list the results in Table III.
Unlike in the cross-well model, there are only a few weak
clutters in the reconstructed results for this approximate ocean
model. Therefore, the model misfit of conductivity is reduced

Fig. 11. Inversion convergence process in the approximate ocean model.
(a) EM data misfit. (b) Seismic data misfit.

obviously by joint inversion through two strategies. The joint
inversion with strategy-2 shows better performance in this
model than that with strategy-1. Moreover, joint inversion
lowers the norm of cross-gradient function by two orders
of magnitude. It should be noted that the acoustic velocity
from joint inversion by strategy-1 is even worse than that
of separate inversion, as is listed in Table III and shown
in Fig. 10(b) and (d). This is probably due to the fact that the
low resolution of EM inversion can sometimes compromise
the retrieved acoustic velocity in joint inversion, although it
helps to discern the interface between the oil and the water in
the previous example.
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TABLE IV

MISFITS FOR DIFFERENT INVERSION METHODS IN APPROXIMATE OCEAN MODEL WHEN SNR = 6 dB

Fig. 12. Inversion results for the approximate ocean model when SNR = 6 dB. Reconstructed profile of (a) conductivity and (b) acoustic velocity in
the separate inversion. Reconstructed profile of (c) conductivity and (d) acoustic velocity in the joint inversion with strategy-1. Reconstructed profile of
(e) conductivity and (f) acoustic velocity in the joint inversion with strategy-2.

Similar to the cross-well model, we also invert the scattered
field data with noise. The inversion results for SNR = 6 dB
are shown in Fig. 12. The data misfits and model misfits
are listed in Table IV. The reconstructed acoustic velocity
profile in Fig. 12(b) is also appreciable. But the reconstructed
conductivity profile in Fig. 12(a) is obviously worse than that
shown in Fig. 10(a). Through joint inversion, the reconstructed
conductivity profile shown in Fig. 12(c) and (e) is enhanced.
And their model misfits are reduced. We further show the
model misfits and the data misfits versus SNR in Fig. 13.
Similar to the cross-well model, the inversion by seismic
waves has better antinoise ability. We note that the model
misfit of acoustic velocity from joint inversion by strategy-1
seems becoming larger with the increase in SNR, as is
shown in Fig. 13(d). The possible reason is as follows.
We try to reconstruct the objects through minimizing the
data misfit and the cross gradient in the cost function.
Comparing Figs. 10(c) and 12(c), we find that the clutters
are more prominent when the SNR is larger, i.e., when
the noise is weaker. When inversion iterations try to match
the structure similarity, clutters will show up in the recon-
structed acoustic velocity profiles [shown in Fig. 10(d)],
and they will finally increase the model misfits. While for
the reconstructed conductivity profiles by joint inversion,

Fig. 13. Data misfits and model misfits change with the SNR in the
approximate ocean model. Data misfits of (a) EM and (b) seismic waves.
Model misfits of (c) EM and (d) seismic waves.

the main structures are inverted better than those clutters
[shown in Fig. 10(c)], and thus the model misfits become
smaller.
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IV. CONCLUSION

In this paper, we develop a joint inversion method based
on the structure similarity between electric conductivity and
acoustic velocity. This model can be applied to a variety
of geophysical inversions without the consideration of the
dimension of different physical parameters. In the forward
computation, the IE is adapted to avoid the large computational
domain and to reduce the accumulated error. The EM and
acoustic total fields are solved by the BCGS-FFT method
where FFT is applied to accelerate the operation between
Green’s functions and induced sources. In the inversion model,
the improved VBIM is used to obtain smoother and fast con-
vergent results. During all the forward and inverse iterations,
Green’s functions are computed only once.

We tested our joint inversion algorithm with two strategies
using the cross-well model and the approximate ocean model.
The simulated results of both the cases show that joint
inversion can compensate the own disadvantages of separate
inversions. In the separate EM inversion, the shapes of the
reconstructed conductivity profiles are unclear although the
conductivity values are correct. At the same time, the separate
seismic inversion cannot distinguish oil from water directly as
the EM inversion. This is improved by enforcing the confor-
mity between conductivity and velocity profiles through intro-
ducing the cross-gradient function in the joint inversion model.
Both the model misfit and cross-gradient function values are
reduced through joint inversion. In addition, the antinoise
experiments show that the reconstructed profiles approach the
true models even with SNR = 6 dB. Therefore, our joint
inversion method not only can give reliable results but also
has a certain antinoise ability. Moreover, it is not difficult
to include more physical parameters in our joint model,
since the forward computation for each physical parameter
is performed individually and the inversion iteration can be
executed alternately.
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